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Results of dynamic simulations of bubbles rising through a liquid are presented. The 
Reynolds number of the flow based on the radius and the terminal speed of bubbles 
is large compared to unity, and the Weber number, which is the ratio of inertial to 
surface tension forces, is small. It is assumed that the bubbles do not coalesce when 
they approach each other but rather bounce instantaneously, conserving the 
momentum and the kinetic energy of the system. The flow of the liquid is assumed to 
be irrotational and is determined by solving the many-bubble interaction problem 
exactly. The viscous force on the bubbles is estimated from the rate of viscous energy 
dissipation. It is shown that the random state of bubbly liquids under these conditions 
is unstable and that the bubbles form aggregates in planes transverse to gravity. These 
aggregates form even when the size distribution of the bubbles is non-uniform. While 
the instability results primarily from the nature of inertial interaction among pairs of 
bubbles, which causes them to be attracted toward each other when they are aligned 
in the plane perpendicular to gravity, it is shown that the presence of viscous forces 
facilitates the process. 

1. Introduction 
Flows of gas-liquid dispersions occur in a variety of industrial and natural processes, 

and therefore the problem of describing such flows quantitatively has been the subject 
of numerous investigations. In particular, one of the central problems is to obtain a set 
of averaged equations that govern the flow of liquids in which the bubbles are 
uniformly dispersed and to predict the conditions under which such a state becomes 
unstable. For quantitative analyses, it is necessary not only to derive the correct form 
of these equations but also to obtain reliable estimates of the various averaged 
quantities, such as the added mass and viscous drag coefficients, that appear in the 
averaged equations. These quantities can be determined with the help of dynamic 
simulations. The simulations are needed because the macroscopic properties depend on 
the details of the microstructure of the dispersion and these details in turn depend on 
the nature of the macroscopic flow. In addition to providing estimates of various 
properties, the simulations can help to understand the relationship between the 
microstructure and the properties of bubbly liquids. 

We consider here a relatively simple macroscopic flow generated by the buoyancy 
forces acting on the bubbles in an infinitely extended homogeneous dispersion. The 
Reynolds number Re of the flow based on the radius a and terminal rise velocity V* 
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of the bubbles is assumed to be large. The effect of finite viscosity is assumed to be 
confined to a small region near the surface of the bubbles. It has been observed 
experimentally that, when the concentration of the surface-active impurities in the 
dispersion is small, there is no separation of the viscous boundary layer from the 
surface of a bubble, and the theoretical analysis of Moore (1963) has shown that the 
size of the stagnation region behind a bubble under such conditions is small compared 
to the radius of the bubble. More specifically, Moore analysed the problem of steady 
uniform flow past a spherical bubble and showed that the velocity field to leading order 
can be considered to be irrotational or potential everywhere in the liquid, and that the 
correction to this is O(Re-i) in the thin boundary layer of thickness O(I2e-i) near the 
surface of the bubble. He also showed that the wake behind the bubble is small, of 
diameter O(Red), in contrast to the flow past a solid sphere for which there is a 
boundary-layer separation causing a finite region of recirculation. While it is not clear 
if his arguments are entirely valid even for the case of flows of bubbly liquids at finite 
volume fractions of the gas bubbles, where the flow around individual bubbles is never 
steady due to complex interactions among the bubbles, we shall assume that the flow 
can be approximated to leading order, O(Reo), as irrotational everywhere in the 
dispersion. 

To keep the analysis relatively simple, we further assume that the bubbles do not 
coalesce and that they remain spherical. The latter requires that the Weber number, 
which is the ratio of the surface tension forces to the inertial forces, be small compared 
to unity. For the air-water system, the conditions of large Reynolds number and small 
Weber number are satisfied by bubbles approximately 1 mm in diameter. Careful 
experimental observations of the dynamics of a pair of bubbles of this size rising under 
the influence of gravity have been reported by Kok (1989). He observed that when the 
two air bubbles approach each other, due to hydrodynamic interactions between them 
in pure water, they generally coalesce. If, however, a small amount of surface-active 
impurities is added to the same system, then the two bubbles do not coalesce but, 
rather, bounce instantaneously. He also calculated analytically the trajectories of the 
bubbles using a potential flow approximation together with the viscous forces 
estimated by the viscous energy dissipation method and showed that the trajectories 
thus evaluated matched very closely with those observed experimentally. Finally, he 
also carried out experiments with moderate to high concentrations of the surface-active 
impurities and found that the potential flow approximation was not valid for such a 
situation. The surfaces of the bubbles become considerably immobile at high 
concentrations of the surface-active impurities, resulting in a finite-size recirculation 
region behind the bubbles and much more complicated hydrodynamics. Thus, the 
calculations we carry out here are likely to be applicable to gas-liquid dispersions in 
the presence of a small amount of surface-active impurities. 

Finally, we shall assume that the radius of the bubbles remains unchanged 
throughout the flow. This is a good approximation since pV*'/P, is usually small 
compared to unity. Here p is the density of the liquid and Pa is the atmospheric 
pressure. 

We describe here a method for carrying out dynamic simulations of the flow under 
the aforementioned conditions. To simulate the condition of macroscopic hom- 
ogeneity, we place N bubbles initially randomly within a unit cell and assume that the 
entire space is filled with the copies of this cell. We determine the potential flow around 
many bubbles exactly by using a method of multipole expansions. The drag force is 
determined using two different methods, both yielding the same results. One is based 
on computing the gradient of the rate of total viscous energy dissipation with the 
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velocity of the individual bubble - the method employed previously by Kok (1989) in 
comparing his experimentally observed trajectories with the calculated ones as 
described earlier, and the other is based on a recent analysis of small-amplitude 
oscillatory flows past bubbles by Sangani (1991). The bounce of the colliding bubbles 
is determined from the assumption that the collision time is short compared to the 
timescale for the inertial motion and that the momentum and the kinetic energy of 
the system is conserved during the collision. We show that the normal component 
of the relative motion of the colliding pair of bubbles reverses its direction upon 
collision just as in the case of collision between two elastic spheres in vacuum, but 
unlike the latter case, all the other bubbles in the dispersion also undergo a change in 
their velocities whenever any two bubbles collide. This is a consequence of the fact that 
the bubbles are essentially massless and that the momentum and the kinetic energy of 
the system is entirely contained by the liquid. 

We find that the state of uniform bubbly liquids is unstable under the aforementioned 
conditions and that the bubbles form large aggregates by arranging themselves in 
planes perpendicular to gravity. These aggregates form even when the initial velocity 
and size distributions of bubbles are non-uniform, provided that the degree of the latter 
is not too high. Finally, we also show that such large aggregates form even when a 
swarm of gas bubbles rises through a liquid at rest at infinity. 

The above results correspond to the case in which we include the buoyancy and 
viscous forces in the simulations. We have also carried out dynamic simulations for the 
case in which these forces are absent, and found that the bubbles do not form the 
planar aggregates if the initial velocity distribution is sufficiently non-uniform. Thus, 
the presence of viscous forces is important for the formation of large aggregates. In 
purely inertial interactions, the overall momentum and kinetic energy is conserved and 
the subsequent development of the microstructure must satisfy these constraints, 
whereas the presence of viscous forces allows the momentum and kinetic energy of the 
system to vary in a manner that facilitates the formation of planar aggregates. 

We should add here that the previous studies by Biesheuvel & van Wijngaarden 
(1982) and Kok (1989), which examined the interaction of a pair of bubbles, have 
shown that the pair has a tendency to align itself in a plane perpendicular to gravity 
as a result of the inertial interactions. This is a simple consequence of the inviscid 
pressure distribution for the pair of bubbles. The pressure in the gap between the 
bubbles is small compared to the ambient pressure when the pair is aligned 
perpendicular to the flow, and this results in attractive forces between the bubbles. The 
opposite is true for a pair aligned parallel to the flow. That the pair of bubbles indeed 
aligns perpendicular to the flow has also been observed experimentally by Kok (1989). 

Based on the above discussion then, one would expect the planar aggregates to form 
from an initial random distribution within a timescale that is related to the amount of 
polydispersivity, initial velocity distribution, the volume fraction of bubbles p, and the 
Reynolds number. From our simulations for /3 = 0.1 and Re = 500, we estimate this 
time for a monodispersed air bubbles to be only 0.1 s. To our knowledge, however, 
such large planar aggregates have not been the subject of any experimental investigation 
and the reason for this apparent discrepancy is not clear to us. However, it should be 
mentioned here that the majority of the large Reynolds number flow visualizations and 
measurements have been carried out under conditions in which either the effect of the 
macroscale flow instabilities such as turbulence or the macroscopic flow generated due 
to uneven distribution of the bubbles in the vessel cannot be ruled out. Finally, the 
bubble size distribution is difficult to control in experiments, and the size of bubbles 
generated in typical experiments is often such that they cannot be assumed to be 
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spherical in shape. Nonetheless, what the present study shows is that the simple set of 
approximations made here is not adequate to explain the experimental observations on 
the rise of bubbles through a liquid, and that we shall need to invoke further 
hypotheses or mechanisms which may be responsible for stabilizing the uniform flow 
of bubbly liquids. It is quite likely that the average properties of the bubbly liquids will 
then explicitly depend on the mechanism we choose for stabilizing. Finally, it should 
also be noted that there are other kinds of flows of bubbly liquids, e.g. shear flows, 
where behaviour may be quite different, and for which the simple approximations used 
in the present analysis may be adequate. 

The organization of the paper is as follows. In $2, we describe in detail the method 
used for the simulation. The many-bubble interaction problem has been solved exactly 
by the method of multipole expansions discussed more fully in Sangani & Yao (1988) 
and Sangani, Zhang & Prosperetti (1991). The calculations for the trajectories of the 
bubbles, their collisions, and an estimation of the viscous drag on them are new and 
so described in detail. The results are presented in $ 3 ,  and concluding remarks in $4. 

2. The simulation method 
As mentioned in the Introduction, our goal is to simulate the motion in an infinitely 

extended bubbly liquid which is homogeneous on a macroscale. To achieve this, we 
assume that the entire space is filled with identical cubic cells with each cell containing 
N randomly placed bubbles with a specified initial velocity distribution. The flow past 
bubbles at large Reynolds numbers can be regarded as irrotational, and hence it can 
be derived from a velocity potential which satisfies the Laplace equation. We therefore 
describe first how we determine the potential flow around many bubbles. 

2.1. A solution for the potentialjow around many bubbles 
The potential flow around bubbles can be determined by solving the Laplace equation 

vzq5 = 0, (1) 
where the potential q5 is related to the velocity field by u = V$. When the Weber 
number is small, the bubbles may be assumed to remain approximately spherical, and 
the boundary condition for determining the above potential is the usual kinematic 
condition 

n-Vq5 = n.ua (2) 
on the surface S" of the bubble a. Here, n is the unit outward normal from S". As we 
shall see later, the velocity ua of the bubble may not be known a priori. Instead, the 
impulse as defined by 

may be specified. Note that in this case v" is an unknown to be determined as a part 
of the solution. 

A solution of (1) satisfying the periodicity requirement can be expressed in terms of 
multipole expansions as described in Sangani & Yao (1988) and Sangani et al. (1991). 
Thus, we write 

N m  n an-m 

$ (x , t )  = G . x +  X I: C (A",Am+2m&J-  (4) 
a=l n=l m=O 
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where (5) 

with ( = x,+ix, and 7 = x, -ix,. S,  is a periodic Green's function for the Laplace 

(6)  
equation that satisfies 

with 7 being the volume of the unit cell and xL the lattice vectors for the periodic array. 
The function S,  was introduced by Hasimoto (1959) and an expression for evaluating 
this function and its derivatives by Ewald's technique is given in Sangani et al. (1991). 
The function S,  itself does not satisfy the Laplace equation but its derivatives do 
(except at the lattice points), and therefore the term with n = 0 is excluded from the 
above expression for 6. Actually, the coefficients with n = 0 correspond to monopoles 
which are needed only when there are fluctuations in the volume of the bubbles. Since 
the dynamic pressure which scales as p V 2  is much smaller than the atmospheric 
pressure, the magnitude of volume fluctuations is negligible. The coefficients A;, and 
$, may be referred to as the strengths of 2"-multipoles located at the centre of the 
bubble a, and G is related to the mean velocity of the mixture. Both G and the strengths 
of multipoles are, in general, functions of time and are to be evaluated from the 
boundary conditions on the bubbles. The mean mixture velocity is evaluated from 

VZS,(x) = 47L 7-l-2 6(x-x,) , 1 [ XL 

where 7f is the volume occupied by the fluid within the basic unit cell and CP = $naa3 
is the volume of the bubble a, aa being its radius. The volume integral on the right-hand 
side of (7) can be readily evaluated using the divergence theorem to yield 

where I" is the impulse associated with the bubble a as defined by (3). The dynamic 
simulations can be carried out under the conditions of either constant U or constant 
G. The latter can be shown to correspond to the case in which the pressure drop across 
the unit cell and the average velocity of the liquid remain constant throughout the 
simulation. Thus, we shall assume that one of the two quantities, i.e. G or U, is 
specified, and the other is then determined from (8). It should also be noted that the 
constant quantity (U  or G )  may be chosen to be zero without loss of generality. 

To determine the strengths of multipoles, we follow the method outlined in Sangani 
& Yao (1988) and expand 6 in a series of surface harmonics around the centre of the 
bubble a as 

- 
where Yn, = P,"(cos 0) cos mcp, Y,, = P,"(cos 0) sin mq, and (3, 8, q) are the spherical 
polar coordinates of a point x with respect to the centre of bubble a, i.e. 

x , - x ~  = scosd, x,-x; = ssinBcosq, x3-x; = ssinesinq. (10) 
The functionsfi, can be expressed as 

f im(s )  = CEm sn + Dzm s+-,. 
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The coefficients Clm and Dtm can be evaluated from the observation that they must be 
related, respectively, to the regular and singular parts of $ at s = 0. Thus, as shown in 
Sangani & Yao (1988), we have 

DEm = (- l)"-"(n -~n)!2~-" A",, (12) 

where $(r) is the regular part of 4 in the neighbourhood of x". Since the singular part 
of S,(x-x") is l/s (Hasimoto 1959), $(') is given by 

- 
The expression for f;m similarly contains em and D",, which, in turn, can be 
evaluated from expressions similar to (12) and (13) with A;m and Am in those relations 
replaced by the corresponding quantities with tildes. 

The expansion of $ near the surface of the bubble 05 as given by (9) is particularly 
useful for satisfying the boundary condition on the surface of that bubble. Thus, on 
noting that n-u is related to the radial derivative offim, and that n, = K O ,  n2 = - ql, 
and n3 = - El, the use of orthogonality of the surface harmonics yields 

f ik(aa) = t m ( a a )  = 0, n 2 2, (1 5 )  

f$(aa) = u;, LY(a.1 = -u:, Ei(aa) = -u;, (16) 

where the prime indicates the derivative of the function with respect to its argument. 
The above relations can be used to provide an equation for relating Cim to D",. For 
example, combining (1 1) and (1 5), we obtain 

n+ 1 "-2n-l 
C" -~ a D",=O, n 2 2  n nm 

plus a similar relation between the corresponding quantities with tilde. It is convenient 
to group the coefficients with n = 1 into a vector. Thus, let 

(18) 

and (19) 

el, e,, and e3 being the unit vectors along the three coordinate axes. The relations for 
n = 1 (cf. (16)) can be expressed as 

w 

Cp = C;,, el - Cr1 e, - Cr1 e3 

D; = DTo el - DTl e,  - DZ e3 = - 2Ay0 el -A'& e,  - fi, e3, 
- 

C,"-2D;aa-3 = v". (20) 

If the impulse associated with the bubble is specified, then, instead of the above 
relation, we must use 

I" = -pa"( C; + D; a"-), (21) 

obtained by making use of (3) and (11) and noting that the components of the unit 
normal vector n on the surface of a sphere are related to the surface harmonics of first 
order. 
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2.2. Viscous forces 
The viscous forces, although small in magnitude for large Reynolds number flows, play 
an important role in determining the magnitude of the average relative velocity and the 
microstructure of the dispersion. In the large Reynolds number flows past free surfaces, 
at which the tangential stress vanishes but not the relative tangential velocity, vorticity 
generation is weak and the effect of viscosity is confined to a thin layer adjacent to the 
surface (see, for example, Batchelor 1967). The boundary-layer analysis of uniform 
flow past a spherical bubble by Moore (1963) has shown that, in these conditions, the 
correction to the velocity as derived from the potential flow approximation is 
uniformly small everywhere in the limit Re + co. This analysis, however, cannot be 
applied to evaluate the viscous force on each bubble to leading order, O(Re-'), as the 
boundary-layer approximation of Moore (1963) breaks down near the rear stagnation 
point so that the correction to the viscous drag from the viscous correction to the 
pressure in the wake behind the bubble is difficult to evaluate. Tam (1981) has 
addressed this problem, but his results are inconclusive. 

For the case of steady translocational motion of a single bubble in a fluid, Levich 
(1962) avoided this difficulty and evaluated the drag on the bubble from the viscous 
dissipation method. Thus, at steady state, the rate of viscous energy dissipation must 
equal the work done by the viscous force on the bubble per unit time and therefore 

Ed = F;.(U-U"), (22) 
where F; is the viscous force on the bubble and Ed is the rate of viscous energy 
dissipation. Now since the velocity field to leading order is given by the potential flow 
approximation everywhere in the liquid, a leading-order estimate of the viscous 
dissipation, and hence the drag, cn be obtained by using the potential flow 
approximation for the velocity field in the dissipation integral, i.e. 

Substituting 4 = Us x - aa3(ua - U )  . x/(2r3) for an isolated bubble in a uniform flow of 
velocity U at infinity, we obtain the Levich's expression for the drag on the bubble a 
as 

In the Levich's calculation the translational velocity was constant. The same result, 
however, was proven to hold for a time-dependent velocity and small displacements in 
Prosperetti (1977). Recently, Kang & Leal (1988) proved that (24) gives correctly the 
instantaneous force on the bubble regardless of the time dependence of the translational 
velocity. 

It is not clear how to extend the above result for an isolated bubble to the case of 
drag on a bubble in the presence of many other bubbles. The rigorous approach would 
be to follow the method of Kang & Leal (1988), which, however, presents some 
technical difficulties that do not arise in the case of a single bubble. More specifically, 
the expression for the viscous correction to the pressure obtained by Kang & Leal 
contains certain integrals involving the vorticity distribution. They show that these 
integrals vanish identically for the case of a single bubble, owing to the symmetry of 
the flow around the bubble. For the case of many bubbles, however, this symmetry is 
not preserved and one would then have to evaluate the vorticity distribution around 
each bubble, a task that is far more difficult. 

F; = 12xpa"(U-u"). (24) 

11 F L M  250 
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A commonly used method for estimating drag on a bubble in the presence of other 
bubbles is to equate the Rayleigh dissipation function to the total energy dissipation. 
Thus, according to this approximation, the drag force on the bubble 01 is computed 
from 

(25) 
where Ed is the rate of energy dissipation in the basic unit cell. As shown in (23), the 
energy dissipation can be related to the sum of integrals on the surface of all the 
bubbles in the unit cell, and upon using the expansion of # in surface harmonics around 
each bubble, it can be shown that Ed is given by 

FT = - tV,,* Ed, 

N m  n 

y = l  n=l m=O 
Ed = ,u 2 z c A,,(D~,', + 5fm) a ~ - ' ~ - ' ,  (26) 

with (27) 
(1+6,,)(n+1)(2n+l)(n+m)! 

n(n-m)! 
An,  = 471 

Thus, the viscous force on the bubble 01 can be evaluated using 

Because of the linearity of the governing equation for #, the derivatives can be 
evaluated by solving a boundary-value problem in which the velocity of all the bubbles 
except bubble 01 is zero and requiring that the overall velocity of the mixture is zero (for 
constant-U simulations). Thus, if there are N bubbles per unit cell, then all the 
derivatives may be evaluated by solving the N-bubble interaction problem a total of 3N 
times. 

The above method of estimating the drag on each individual bubble is time 
consuming when N is large. We have therefore used another approach for evaluating 
drag on each bubble as described below. Both methods give essentially the same value 
of the drag, but one is computationally more efficient. The second method, which we 
now describe, is based on the exact analysis for small-amplitude oscillatory flows and 
is described in more detail in Sangani (1991). According to this method, one first solves 
for the inviscid approximation and determines A",, and hence the coefficients D;m. 
This potential flow has a correction of O(Re-i) within a thin region near the surface of 
the bubble, and this correction in turn modifies the pressure and the velocity field to 
O(Re-l) everywhere including the regions away from the surface of the bubbles. It is 
this correction of O(Re-') to the pressure that is required in evaluating the drag on the 
bubble correct to O(Re-l). The analysis of the flow in the region close to the surface 
of the bubbles then results in the following boundary value problem to be solved for 
the O(Re-l) viscous correction #" to the potential. #" satisfies the Laplace equation 
together with the boundary condition 

f;z(aE) = - 2(n + 1) (2n + 1)  D ; ~  (29) 
Heref,"; is the coefficient of the surface harmonic Y,, in the expansion of q5" around 
the surface of the bubble a. This coefficient can be expressed as in (1 l), i.e. 

E,(s) = C:; sn + D?, s-"-~. (30) 

(3  1) 

Substituting (30) into (29), we obtain 

A similar relation applies to ern and &&. 

-211-1 
nC;; - (n + 1) DZL aa = - 2(n + 1) (2n + 1) DEm 
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Once these coefficients for the viscous correction have been determined, the force on 
the bubble a is evaluated from 

with similar relations for the components of the viscous force along the x, and x, axes 
obtained by replacing DC in the above by-DyT and - D  respectively. 

The above scheme for estimating the viscous force on individual bubbles is correct 
to the leading order, O( 1 /Re) ,  for small-amplitude displacements in small-frequency 
oscillatory flows. Interestingly, the force on a bubble evaluated in this manner agrees 
with that computed from the gradient of the dissipation function (cf. (26)) so that the 
dissipation method is also exact, at least for the special case of small-amplitude, small- 
frequency oscillatory flows. The main advantage, however, in using the second method 
outlined here is the considerable saving in computation of the viscous forces on the 
bubbles. More specifically, the above scheme requires solving a system of equations 
only once, as opposed to the gradient method which requires solving the system of 
equations a total of 3N times. 

A simple calculation for the drag on a bubble in the presence of another bubble at 
a distance R from it is illustrated in Appendix A, where we also show that the two 
methods of evaluating drag on individual bubbles give identical results, at least up to 

2.3. Equation of motion for  the bubbles 
Once the velocity potential and viscous forces are determined, the next step is to 
evaluate the trajectories of individual bubbles. Since the bubbles are assumed to have 
negligible mass, the force balance can be written as 

Ft1 = 4 1 t p a ~ - ~ D ~ ~ ,  (32) 

O((a/R)8). 

- Jsepn dA + Ft = 0. (33) 

Here p is computed from the potential flow approximation, and the viscous force F; 
is evaluated as described in the previous subsection. The pressure is determined from 
the Bernoulli equation 

- p = p  -+;u*u-g.x . (;! 1 (34) 

Evaluation of a$/at in the above expression is difficult as the direct use of (4)  requires 
knowledge of the time derivatives of the strengths of the multipoles. It is convenient 
instead to use the local expansion (9) of $ around the centre of the bubble a for its 
evaluation. On noting that q3 in (9) is a function of s and t, with s = x-x"(t), we have 

- a# (x, t )  = - a# (s, t )  - u;- a# (s, t )  
at at asi (35) 

where we have used ZI; = -asi/at. The partial derivative on the left-hand side of (35) 
is evaluated for constant x whereas that in the first term on the right-hand side is 
evaluated for constant s. Using the above expression for the derivative of $, the force 
balance now reduces to 

dI" . 
dt ~ I"=  F;+FC+F;, 

where F; is the force of potential flow interaction given by 
P 

F; = p J ($.u-u.vu)ndA, 
SU 

(37) 
11-2 
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F; = - p ~ "  g is the buoyancy force due to gravity and I" is the impulse associated with 
the bubble a (cf. (3)). Now all the quantities on the right-hand side of the (36) can be 
evaluated, and therefore the force balance on the bubble a gives p. If the initial 
velocity distribution is prescribed, then I" can be computed once the velocity potential 
is determined using (21). The force balance then gives an estimate of the impulse 
associated with each bubble during the subsequent time step. Thus, the problem for 
subsequent times is to determine the potential field and hence the velocity of the 
bubbles given their impulses. An algorithm for numerical simulation of the motion of 
individual bubbles is given in more detail in 52.5 after we discuss the collision of 
bubbles in the next subsection. The integral in (37) can be evaluated by means of the 
following expressions 

where 

J sa n=l  m-0 

2nn(n + 2)  (n + m + 1) ! 
(2n + 1) (2n+ 3 )  (n-m)! (1 + Smo). Hnm = (43) 

The integral of u .  uan3 is obtained by interchanging v; and 0; in (42).  For brevity, we 
have omitted the superscript CI on the functions f n m  etc. It should be noted that with 
the use of relations such as (17), these functions at s = a" can be related to D",, and 
hence by use of (12), to A",. 

As shown in Sangani & Didwania (1993), F; can alternatively be determined from 

where s = n - m + k- j ,  and the summation is to be carried out over y (1 to N ) ,  n (1 to 
a), m (0 to n), k ( 1  to a), and j (0 to k).  For a = y, S,  in (44) must be replaced by 
its non-singular part. 

2.4. Collision of bubbles 
We now address the question of what happens when two bubbles approach each other. 
The attractive force between the bubbles is generally caused by the reduction in the 
pressure in the gap between the two bubbles compared to the ambient pressure. This 
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force remains finite in the limit of a vanishingly small gap provided that the bubbles 
remain spherical. The viscous forces are generally small in magnitude at large Reynolds 
numbers so that they also cannot prevent the bubbles from approaching arbitrarily 
close to each other. It may be noted that the viscous forces cannot prevent bubbles free 
of surface-active impurities from approaching each other even when the Reynolds 
number is very small as shown, for example, by Davis, Schonberg & Rallison (1989). 
Thus, the viscous forces are unimportant, and the bubbles approach each other with 
a finite relative velocity. Once the bubbles are close enough, the finite surface tension 
effects become important but, in the absence of surface-active impurities, they coalesce 
if the Weber number is small. As mentioned in the Introduction, experimental 
observations on the dynamics of a pair of bubbles in a large Reynolds number flow 
have been reported by Kok (1989). He found that the bubbles bounce away from each 
other almost instantaneously in the presence of surface-active impurities. If the 
concentration of the impurities is not too large, the observed trajectories of the bubbles 
are in very good agreement with those obtained theoretically using the potential flow 
approximation for the fluid velocity together with the viscous drag evaluated from the 
dissipation method described in the previous subsection. If the concentration of the 
impurities is moderate or high, a finite-size recirculation region forms behind the 
bubbles and affects the dynamics of the pair of bubbles, and the potential flow 
approximation breaks down. In the present study, therefore, we shall consider the case 
in which the surface-active impurities are present in a small amount so that the 
potential flow approximation remains valid and at the same time the bubbles do not 
coalesce. This is perhaps the simplest situation to examine theoretically. As mentioned 
earlier, Kok (1989) also observed that the bounce of the bubbles is almost 
instantaneous, and therefore we shall assume the collision of the bubbles to be 
relatively short-time phenomenon on the timescale of the inertial dynamics. 

We now return to the discussion of motion of many bubbles and examine what 
happens when a pair of bubbles undergoes a collision. Since the timescale for the 
collision is small and the Reynolds number of the flow is large, we neglect the viscous 
effects during the collision. The invariants for inviscid interactions are described in 
detail in Appendix B. In the calculations that follow, we shall take U = 0. The results 
we derive, however, can be shown to be valid even when U is a constant other than 
zero, or when G is a constant instead of U. As shown in the Appendix B, the 
momentum and kinetic energy of the liquid are related to the sums of I" and e", and 
that these sums remain invariant. Here, e" is defined via 

e" = +I"-v" (U= 0). (45) 
The collision of bubbles is different from the collision of perfectly elastic particles in a 
vacuum in the sense that all the momentum and the energy is contained by the medium 
in the former case as the bubbles are essentially massless. As we shall see presently, a 
consequence of this fact is that the velocities of all the bubbles in the dispersion are 
affected whenever any two bubbles collide. To calculate these velocity changes, let us 
suppose that bubbles labelled 1 and 2 collide. We may imagine that a very short-range 
force comes into play when they approach very close to each other and that this force 
is directed along the separation vector. This force, for example, may result from the 
repulsion among the molecules of the surface-active impurities adsorbed at the 
interface, or may arise due to a surface tension gradient-driven motion of the liquid 
into the gap between the bubbles caused by the depletion of the surface-active 
impurities there. The exact details of the mechanism by which such a force would arise 
are not important provided that the collision is a short-timescale process. Thus, on the 
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inertial timescale, we may suppose that an equal and opposite impulse is applied to the 
two bubbles and write 

dI1 
~ = l$',(t-t,)m, 
dt 

for time t close to the collision time t,. Here, IF,  is the magnitude of the impulse, and 
m, is the unit vector along the separation as given by 

X1--X2 m, =- 
a1+a2' (47) 

where a1 and a2 are the radii of the colliding bubbles. Integrating (47) with time in the 
immediate vicinity of t, then leads to a change in the impulse of bubble 1 during the 
collision process as given by AI1 = e m , .  The change in the impulse of bubble 2 is 
equal in magnitude and opposite in the direction, and that of all the other bubbles in 
the cell is zero. Since the sum of impulses is conserved by this choice of change in 
impulses, we need only to calculate the change in the sum of e". The condition of its 
invariance will then provide us with an equation for determining the unknown 4. 

The change in velocities of the bubbles during the collision must be linear in I$ and 
therefore we write 

2Ae" = A(I".u") = l $ ( u a . i " + I " ~ 6 " ) + ~ z ( 6 a ~ ~ ) ,  (48) 

where ca is the change in the velocity of bubble a due to unit impulses applied along 
the separation vector of the colliding pair, and ua is the velocity before the collision. In 
other words, we have taken Au" = 4 6". The same convention applies to the impulses 
also, and in particular we have 

1 

I ~ = - P = ~ ~ ,  P = o ,  a = 3 , 4  ,..., N.  (49) 

Now, since the sum of ea does not change during the collision, (48) yields two values 
of I$ ,  one of which equals zero and corresponds to no collision, and the other 
corresponds to the magnitude of the total impulse during the collision 

where the summation is over all the bubbles in the unit cell. Thus, in dynamic 
simulations, we first move the bubbles to the point where they collide and determine 
6" by solving for the velocity potential 6 given the impulses P associated with each 
bubble (cf. (49)). Substituting for 6" in (50) allows us to determine F, and hence the 
values of I" and u" immediately after the collision process. These values are then used 
for further trajectory calculations. 

There is an equivalent expression for F, that is slightly more useful in dynamic 
simulations and this can be derived from the reciprocal theorem for the Laplace 
equation. Since both $ and 6 are solutions of the Laplace equation, it is easy to show 
that 

where is the surface of the unit cell. Now since $ on 37 can be expressed as a sum 
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of a linearly varying part (Gsx) and a periodic part (cf. (4)), and similarly 6 in terms 
of G-x plus a periodic part, the integral on the right-hand side of (51) simplifies to 

By application of a divergence theorem and using appropriate expressions for Gj and 4 (cf. (4) and (8)), the above integral further simplifies to rGj f i j ,  which vanishes since 
Uj  = 0. Upon substituting zero for the right-hand side of (51), using n.V$ = n- ua and 
the definition of the impulse, we obtain 

a=l a=l 

Substituting this result into (50), we obtain another expression for 4:  

(53) 

a=l 

where we have utilized the fact that fi is non-zero only for the colliding pair. It can now 
be easily seen from the above expression for I$ that the normal component of the 
relative velocity of bubble 1, with respect to bubble 2, is simply reversed upon collision 
since the normal component of the relative motion after the collision equals 

(55) 
which upon substituting for I$ from (54) reduces to - m,. (vl - v'). It may be noted that 
this result is valid even when the radii of the colliding bubbles are not equal. 

Although the two expressions for I$ derived here are equivalent, there is an 
important advantage in using (54) in computing the velocities of the bubbles just after 
the collision as this ensures that the normal component of the relative velocity of the 
colliding bubbles will reverse upon collision. The computations are usually carried out 
with a finite number of multipoles in the solution for $ and 6 and therefore, in general, 
I$ computed from the two expressions may differ slightly by an amount that depends 
on the number of multipoles retained. In most instances this difference is unimportant, 
and, in fact, our earlier calculations were made using (50). However, for some 
simulations, after carrying out the dynamic simulation for long times when the planar 
aggregates were nearly formed, we would find that the colliding pair did not reverse its 
normal component of the relative velocity, and consequently further calculations could 
not be made. This generally happened when the magnitude of the relative velocity was 
very small. Therefore, all results presented here were obtained using the second 
expression for 4. 

2.5. Algorithms for trajectory calculations 
At time t = 0, we start with the prescribed spatial and velocity distribution of the 
bubbles and determine the potential field by solving for the strength of the multipoles 
in (4). Once the multipoles are determined, the viscous force is estimated from the 
method described in 52.2. This requires solving for the viscous correction $", which 
satisfies the Laplace equation, together with the boundary condition on the bubbles 
determined from the potential flow solution (cf. (29)). The multipoles for this viscous 

[( v1 + I$ 8') - ( v 2  + I$ it')] - m,, 
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correction are determined in the same manner as for the potential flow problem. With 
the viscous force evaluated from relations such as (32),  and using the formulae 
(38)-(42) to evaluate l$, we determine i; for each bubble. We also determine 1; from 
the potential flow solution with the use of (20) and (21). Next, an Euler scheme is used 
to estimate the positions and impulses of the bubbles at time t = At.  Thus, 

IF*(At) = I;(O) + AtiF(0) (56) 

and x;*(At) = x;(O) + Atv;(O). (57) 

Here the time step At for the integration is determined as follows. First, with (57) giving 
for the position of bubbles at subsequent times, the minimum time for the collision 
between any two pairs of bubbles is determined. Next, if this time is greater than the 
specified time h for integration, then At is chosen to equal h. Otherwise, the minimum 
time for the collision is chosen as At.  

At the next time step we solve for the potential and viscous flow corrections with the 
impulses of the bubbles specified as the boundary conditions. The solution in turn 
allows us to determine the velocity of all the bubbles at time At,  and this procedure is 
repeated a number of times to determine the trajectories of all the bubbles. The 
difficulty with this simple scheme, however, is that it is not very accurate. For the 
special case of inviscid interaction, the sum of 1; and ea over all the bubbles must 
remain invariant, and we use this as a criterion for assessing the accuracy of the 
integration scheme. Actually, there are a number of variables in the simulations to be 
selected. These are the number of multipoles retained in the solution (4), the maximum 
time step h, and the integration scheme. It turned out that the results are not very 
sensitive to the number of multipoles. In view of the rather large computational efforts 
involved in these simulations, it is necessary to choose h that is not too small. We found 
that the sum of 1; and ea increased slowly with time if we used the scheme described 
above so that, after a few thousand time steps, the sum of ea increased by as much as 
50%. This increase could be substantially decreased for the same value of h by 
choosing the modified Euler scheme for integration described below. 

According to this modified scheme, we use the estimates of the impulses and 
positions of the bubbles to determine the potential flow field, and hence the velocities 
of the bubbles, at time t = At.  Next, we estimate the average velocities of the bubbles 
during the time interval and use them to estimate the position of the bubbles at time 
t = At*, i.e. 

x;(At*) = x;(O) + At*!j(u,(O) +$(At))  (58 )  

Here At* is the minimum of h and the minimum time for the collision to occur for any 
pair of bubbles with the modified estimates of the velocities of the bubbles. A similar 
expression is used to obtain a new estimate of I; at time At*. This modified scheme was 
used for dynamic simulations in the presence of viscous and gravitational forces. For 
pure inertial interaction calculations, we found that this scheme resulted in a 5-10 % 
increase in the sum of 1; values and ea values for every 2000 time steps. Since this 
increase can have a significant effect on the microstructure at long times, a further 
modification was made to the above scheme for the special case of inertial interactions. 

Generally, the sum of impulses changes by less than 0.01 YO per time step owing to 
the slight inaccuracy introduced by evaluating the velocity potential using a finite 
number of multipoles and due to the time discretization. Thus, at the end of every time 
step, the sum of i; was evaluated, and this quantity divided by N was subtracted from 
each of the i;. This difference is indeed an insignificantly small quantity for each time 
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step, but it ensures that the sum of I; remains unchanged during the simulation. It is 
difficult, on the other hand, to ensure that the sum of e" remain invariant throughout 
the simulation. Therefore, we employed a slightly arbitrary scheme which maintains 
the sum of this quantity to fluctuate within 2 % throughout the simulation. According 
to this scheme, the sum of e" was evaluated after every 100 time steps, and if it was 
greater than its value at time t = 0, then the spread of each 1; from the mean impulse 
was reduced arbitrarily by 0.5 YO. This maintains the sum of 1; unchanged and at the 
same time decreases the sum of e" (by an amount that can not be estimated a priori). 
It turned out that the sum of e" was not always greater than its initial value, and so this 
operation of arbitrarily reducing the spread in the impulses of the bubbles was carried 
out roughly every 300 time steps. We carried out some simulations with smaller h, for 
which the accuracy is better, to check that this scheme of arbitrarily reducing the 
variance in I" did not produce any significant change in the results. 

3. Results 
Figure 1 shows various coefficients as functions of the highest order of multipoles N, 

retained in solving (4) (i.e. with n d N,) for /3 = 0.3 and for 16 bubbles per unit cell. 
These results are calculated for a random configuration of bubbles with equal 
velocities. The total number of unknowns in determining the velocity potential q5 
equals N,(N, + 2) N ,  where Nis the number of bubbles per unit cell. N ,  = 1 corresponds 
to obtaining a solution for q5 by including only the dipoles in (4), whereas N, = 5 
corresponds to including up to 25 multipoles. The added-mass coefficient C,, the 
viscous-drag coefficient Cd, and the energy coefficient E are defined via 

where the x,-axis is taken in the direction of the buoyancy force and V is the mean 
velocity of the bubbles. As seen in figure 1, these coefficients change by less than 5 %  
as N ,  is increased from 1 to 5. The effect of changing Nand N, on dynamic simulation 
results for C, is shown in figure 2. The average velocity of the gas phase is continuously 
changing and, in computing C, as a function of time from (59), we used the mean 
velocity of the bubbles evaluated at that instant. The Reynolds number is defined by 

Re = paV*/,u with V* = a2pg/9,u. (62) 

The time is non-dimensionalized with a/V*,  and the time step h for integration was 
chosen to be 0.02. The results shown in figure 2 were obtained by averaging C, over 
300 time steps. As seen in this figure, the fluctuations in C, are substantial and that the 
differences in the dynamic behaviour for different N, and N at given t are relatively 
small. 

Calculations for C, and C, for p ranging from 0.1 to 0.5 showed that these 
coefficients continued to increase with time, with the most pronounced increase 
occurring for lower values of p .  For example, for p = 0.1, C, increased from about 1.3 
at t = 0 to 4 at t = 100. The reason for this marked increase in C, or C, can be 
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I I I I 

FIGURE 1. Convergence of the numerical results for the added-mass coefficient C, (O), the viscous- 
drag coefficient C, (A), and the energy coefficient E (0) as a function of the highest-order N, of 
singularities retained in the solution. Here, /3 = 0.3, N = 16, and the velocities of the bubbles are 
equal. 

FIGURE 2. 
Time 

of N and N,. Re = 500, p = 0.3. 
The added mass coefficient as a function of time for three different combinations 

understood by examining the microstructure as a function of time. As seen in figure 3, 
the bubbles arrange themselves in a horizontal plane as the time progresses. These 
calculations were made with N = 20, N, = 2, and Re = 500. The formation of planar 
aggregates is not dependent on N or N,. This was verified by repeating calculations 
with N, = 3 and N = 16 and with N ,  = 2 and N = 40. The latter case is shown in figure 
4. Here, all the bubbles in the cell cannot be packed into one planar aggregate, and, 
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-4.71 x2 4.71 -4.71 x2 4.51 

FIGURE 3. The spatial configuration of bubbles at different times for /J’ = 0.1, Re = 200, and 
N = 20. (a) t = 0; (b)  t = 33; (c, d )  t = 60. 

therefore, two aggregates form. To distinguish the bubbles in the aggregate near the 
plane x1 = 0 from the others, we have denoted their centres by pluses. It is interesting 
to note that this aggregate contains the same number of bubbles (21) as t varies from 
37 to 105. The aggregate near x1 = 0 is finite in the x2-direction but extends the full 
length of the unit cell in the qdirection, while the other aggregate extends fully in the 
x2-direction. 

The planar aggregates form even when the initial velocity distribution is highly non- 
uniform. For example, we repeated the calculations for N = 20 with an initial velocity 
given by v; = e, being a uniform random variable between -0.5 and 0.5. The planar 
aggregates formed in this case in roughly the same amount of time ( t  < 70). The 
magnitude of Re also played a relatively minor role; it only changed the time it took 
to form planar aggregates. The results for C, as a function of time for three different 
Re and an initial random velocity distribution are shown in figure 5. The planar 
aggregates were seen for Re = 100 by t = 30 and for Re = 500 and 2000 by t = 60 and 
120, respectively. These estimates of times are only approximate, and no scaling of the 
time of aggregate formation with Re is implied. Of course, if Re = 00, then the 
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C, 2.0 

1 . 5  
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Time 
FIGURE 5 .  The added-mass coefficient C, as a function of time for three different Reynolds 

numbers. /3 = 0.1 and N = 20. 

microstructure at long times continues to depend on the initial velocity (or impulse) 
distribution. In that case, the sums of I" and e" = :(I". IF), which depend on initial 
spatial and velocity distributions, remain constant throughout the simulation. Figure 
6 shows results for two different initial conditions. In one case the initial impulse 
distribution is uniform (I; = ddl) and in the other non-uniform (I; = Si l+g) .  In 
these simulations, the sum of e" normalized by the average impulse, i.e. 
E' = ( e )  (47~a~p /3 ) / (1 , )~ ,  remains constant. We see that the bubbles do not form 
planar aggregates in these cases. The corresponding results for C, as a function of time 
are shown in figure 7. The increase in C, with time is much smaller in this case than 
that obtained with finite Re. Thus, while the tendency to form planar aggregates results 
primarily from the inertial interactions, the dissipative mechanism is essential for these 
aggregates to form. 

The average velocity of the mixture was taken to be zero in the results described 
above. To make sure that the principal finding, i.e. the formation of aggregates, does 
not depend on this restriction, we also carried out simulations in which G (cf. (8)) was 
held constant during the simulation. This corresponds to the case in which the average 
velocity of the liquid remains constant. Once again, we found that the planar 
aggregates form for finite Re. The results that now follow were in fact obtained by 
taking G = 0. 

Obvious questions that arise from the results presented here are: (i) what influence, 
if any, does the artificially imposed periodicity have on the formation of these 
aggregates; and (ii) whether such aggregates would form if N were much larger. To 
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FIGURE 6. The spatial configurations of bubbles at different times for two different initial impulse 
distribution. Re = co, /? = 0.1, and N = 20. (a, b) E' = 0.40; (c ,  d )  E' = 0.50. 

answer the first question, we carried out simulations for a swarm of bubbles, initially 
cubic in shape, rising through a liquid quiescent at infinity. The calculations for this 
case are the same as that for N bubbles in a periodic array except that the Green's 
function S,(x) in (4) is now replaced by l/lxl, the Green's function for the infinite 
space. Also, since the microstructure does not seem to depend on N, significantly, the 
calculations for larger N were made with N, = 1 .  Note that to obtain a non-zero 
estimate of the potential interaction force F; by the expressions given by (38)-(42), we 
must use N, > 2. On the other hand, a non-zero estimate can be obtained even with 
N, = 1 if we use (44). A detailed comparison of the results obtained by using (44) and 
N, = 1 with those obtained from (38)-(42) and N ,  = 2 showed that while the difference 
in F; for individual bubbles can be anywhere from 0 to 40 YO, the added mass coefficient 
calculated by the two methods agreed within few percent. Also, the planar aggregates 
formed regardless of the choice of N ,  and the method of computing F;. Therefore, the 
calculations for larger N to be presented next were made using (44) and N ,  = 1 .  The 
CPU time on an IBM 3090 for a swarm of 150 bubbles with N ,  = 1 was about 0.5 s 
per time step, and about 2 s for 120 bubbles in a periodic array. As the bubbles begin 
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FIGURE 7. The added-mass coefficient C, as a function of time for the same conditions as in 
figure 6. 

to form aggregates, the time step for any pair of bubbles to collide decreases 
considerably with the increase in N .  Therefore, to carry out simulations to t = 80, we 
typically needed 20 to 40 thousand time steps. 

The results for the cubic swarm of bubbles with N = 150 are shown in figure 8. At 
t = 0, the bubbles are placed randomly within a cube of size 18.5 units, the radius of 
the bubbles being unity. This corresponds to /3 = 0.1 within the swarm. As seen in 
figure 8, at t = 80, the bubbles have arranged themselves into two large planar 
aggregates. These aggregates are about 23 x 23 in size, suggesting the stability of these 
aggregates over lengths that are significantly larger than the radii of the bubbles. 

Returning now to the case of bubbles in periodic arrays, we present in figure 9 the 
results obtained with N = 120 and p = 0.1. For this situation, and that considered 
earlier in figure 4, all the bubbles within the cell cannot be packed into a single plane, 
and the natural question that arises is whether all the bubbles in the celi will eventually 
form a tightly packed slab that is thicker than the diameter of the bubbles or will there 
be two or more distinct planar aggregates. As seen in figure 9, the bubbles very quickly 
arrange themselves into two planes. The change in the microstructure from t = 60 to 
110 is relatively small. At t = 74, roughly 64 bubbles are in one aggregate and 56 in the 
other, and at t = 110, the larger aggregate contains 67 bubbles. From this calculation, 
however, it is difficult to establish the behaviour at t = 00. A possible scenario is that 
the aggregate with the smaller number of bubbles will loose one bubble at a time and 
the other one gain it such that eventually all the bubbles will pack into a single, thicker 
slab. The other possible scenario is that the two slabs will have exactly the same 
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FIGURE 9. The spatial configurations for N = 120, Re = 200, p = 0.1. (a) t = 37, (b) t = 61, 
(c) t = 76, (d) t = 110. 

number of bubbles and will therefore move with the same velocity. Unfortunately, the 
computational effort involved in pursuing this question is excessive, and therefore we 
are unable to answer it. At any rate, the results presented in this section amply suggest 
that the state of monodispersed uniform bubbly liquids is unstable, and that the planar 
aggregates formed as a result are stable up to fairly large sizes. 

In polydispersed liquids, bubbles of different radii are acted upon by significantly 
different buoyancy forces, and, therefore, it is possible that the aggregates seen above 
may not form. To test this hypothesis, we first carried out calculations with N = 40, 
/3 = 0.1, and aa = a(1 + e), with e a uniform random variable between - 0.2 to 0.2. 
We shall refer to such a mixture as 40% polydispersed. We found that a planar 
aggregate formed within each unit cell even in this case in roughly the same amount 
of time ( t  < 70) as the corrsponding monodispersed liquid. To see if such aggregates 
break up if the polydispersivity is larger and /3 is smaller, we carried out simulations 
with a 70% polydispersed mixture with p = 0.03 and with a random initial velocity 
distribution with a zero mean. Note that the terminal rise velocity of a bubble with 
radius 1 . 3 5 ~  is roughly 4.3 times that of a bubble with radius 0 . 6 5 ~ .  The results of 
simulations with N = 60 and Re = 200 are shown in figure 10. Once again, we see that 
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the state of uniform random bubbly liquid is unstable. Unlike the results presented 
earlier, however, it appears that we do not see planar aggregates extending over the 
complete cross-section of the unit cell. Rather, it appears that there are two or three 
distinct aggregates moving with different speeds through the liquid. Whether this 
phenomenon, i.e. formation of aggregates smaller than the size of the unit cell, depends 
on the amount of polydispersivity and p or N can be examined by carrying out 
simulations with larger N .  Such results are shown in figure 11, The initial conditions 
for the simulation are same as in the previous case, but now N =  100. The larger 
number of bubbles allows larger aggregates to form, and thus we believe that large 
aggregates will form even in polydispersed liquids provided that we choose sufficiently 
large N .  

4. Concluding remarks 
We have shown that the uniform spatial distribution of bubbles is unstable and that 

planar aggregates form as a result. These aggregates form even when the size 
distribution of the bubbles is non-uniform, and they are stable up to fairly large sizes. 

It is possible that the model we have used here for the flow past bubbles at large but 
finite Reynolds number is oversimplified by assuming that the flow is essentially 
irrotational. The assumption of the potential or irrotational flow may be justified in 
case of a single bubble or pair of bubbles rising in otherwise quiescent liquid but not 
for non-dilute dispersions of bubbly liquids. At any rate, the calculations presented 
here suggest that we shall need to invoke a further hypothesis about the nature of the 
forces that keep the bubbles from forming aggregates. One possibility is that there is 
a random distribution of vorticity in the dispersion that is caused by the flow around 
bubbles and at the wall of the container in which the dispersion is flowing. It may be 
possible to model this distribution as giving rise to an additional random force on the 
bubbles. Another possibility is that a macroscopic flow generated due to the bubble 
distributor at the bottom of the vessel may induce a shear flow or stirring sufficient to 
prevent the aggregates from forming. Finally, we have assumed here that the bubbles 
remain spherical. This requires that the radii of bubbles be smaller than 1 mm. Most 
experimental observations, however, are made with bubbles of larger radii. Further 
investigation is needed for determining which of these factors is responsible for the 
discrepancy between the experiments and the model used here. 
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use of supercomputer facilities at the Cornell Theory Center. 

Appendix A. Viscous forces on a pair of bubbles 
We illustrate in more detail in this appendix how the viscous forces on the bubbles 

are evaluated by considering the simple case of axisymmetric motion of two bubbles, 
labelled 1 and 2, with their respective positions at x1 = fe, R and x2 = -;el R, and 
velocities along the xl-axis of V, and V,. Here, el is the unit vector along the xl-axis. 
The radii of the bubbles will be taken to be unity. The velocity potential is given by 
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The strengths of multipoles A; can be determined from the boundary condition on the 
surface of the bubbles in a straightforward manner to yield 

A: = - : V , + i G R - 3 - 1 v R - 6 - 3 v  2 1  2 1  R-'+O(R-'), (A 2 )  
(A 3)  
(A 4 )  
(A 5 )  

A ;  = -Iv +iv  R-3-IV R-6-- V, R-' + O(R-'), 
2 2  2 1  2 2  

A: = - V, R-4 + V, R-7 + O(R-'), 
A:  = V, R-4 - V, RP7 + O(R-'). 

Now the viscous force on each bubble can be evaluated from the dissipation method 
by use of (28) which yields, on noting that DE0 = A;, 

Substituting for AY, from (A 2)-(A 5)  yields 

(A 7) -~ F' = yI  -2V, RP3 +3V, R-6 + 11 V, R-'+ O(R-'). 
127y 

The viscous force on bubble 2 is obtained by exchanging V, and V, in (A 7). 

quoted by van Wijngaarden & Kapteyn (1990). 

described in the main text. In this method we first write the viscous potential as 

The above expressions for the viscous force on the pair of bubbles agree with those 

Now we illustrate the method of estimating the viscous forces by the second method 

and solve for B", from the condition (cf. (29)) 

n 
n +  1 

Pn = - C; + 2(2n + 1) A;, 

where C; is defined via the expansion of p near the surface of the bubble CL as 
03 

T = c (B", Kn- l  + c; sn) Pn(cos O), 
n=1 

with 0 and s measured with respect to the centre of the bubble 01 and the x,-axis. It is 
easy to show that 

Now substituting for Ci  from (A 1 1 )  and for A; from (A 2)-(A 5 )  into (A 9)  yields 
values of Bi. In particular, 

Bt = - 3 V, +6V, RW3 -9yI R-6 - 33 V, R-' + O(R-'). (A 13)  
The substitution in F: = 4npB: yields the same expression for the force on the bubble 
as that obtained by the dissipation method (cf. (A7)). Thus, we see that the two 
methods yield identical results to O(R-') for the special case of two bubbles aligned in 
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the direction of their motion. A comparison of the numerical results for the viscous 
drag obtained by the two methods for N bubbles randomly placed within a unit cell 
also showed virtually no difference, and hence, we conclude that the two methods are 
equivalent. 

Appendix B. Invariants for potential flow interactions 
In the absence of viscous and gravitational forces, certain quantities remain 

invariant in dynamic simulations. Checking for their invariance provides a good test 
of the numerical simulations, and therefore we discuss these properties here. The 
simulations can be carried out for either constant U or constant G. We first consider 
the former. For this situation, the total momentum and the kinetic energy of the liquid 
do not remain invariant. Instead the sums of impulses and ea remain invariant, with e" 
defined by 

(B 1) 
which reduces to (45) for the special case of U = 0, U being the mixture velocity. 
Denoting the time rate of change of the impulse associated with the bubble a under 
potential interactions by i;, we have 

ea = !j[ I"+pa"U].[v"- V ] ,  

,. 

Since uj nj = v; nj on the surface of the bubble, the integral on the right-hand side of 
(B 2) can also be written as 

(iu, u, ni - ui uj n,) dA + vj" ui ni - uj nt) dA. (B 3) s, JsJ 

jrp = p C Is= T j  nj dA, with T, = iuk uk cYi, - ui uj. 

When u is derived from a gradient of a potential function, the second integral on the 
spherical surface can be shown to vanish identically, and hence we have 

N 

(B 4) 
a= 1 a=l 

Furthermore, it is easy to show that the divergence of q, vanishes in the liquid when 
the velocity field is potential. An application of the divergence theorem therefore 
reduces the sum in (B 4) to an integral of q j n ,  on the surface of the unit cell, and the 
latter in turn vanishes owing to the periodicity of the velocity field. Consequently, we 
find that 

N 

ci;.p=o. (B 5 )  
a=l 

Thus, the sum of impulses remains invariant in the absence of gravitational and viscous 
forces. 

It may be noted here that while the sum of impulses is invariant, the momentum of 
the liquid does not remain constant for inviscid interactions. The momentum of the 
liquid within the unit cell can be calculated using the divergence theorem to be 

N N 

udV= c I i + p  &dA = Ii+p7G, (B 6 )  
pJrr a=l J1, a=l 

where 7f is the volume occupied by the liquid and 7 is the total volume of the unit cell. 
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Now G is related to U and D, via (8) and, for a constant- U simulation, G changes with 
the sum of the dipoles D, associated with each bubble. Note that the overall pressure 
gradient is directly related to 6, and so the pressure gradient across the dispersion is 
continuously changing during the simulation so as to keep the average velocity of the 
mixture the same at all times. Corresponding to these pressure changes are changes in 
the momentum of the liquid, and hence the total momentum of the liquid is not 
conserved when U is kept constant. 

The kinetic energy of the dispersion within one unit cell and be evaluated from 

Applying the divergence theorem to evaluate the last integral, and simplifying, we 
finally obtain 

N N 

K =  $pGj U j r +  C ea+fUi C [(Ui-vT)pa"+ZF]. (B 8) 
a=l  a=l 

Since Ui and the sum of impulses is constant during the simulation, we obtain 

where we have made use of (8). Now an alternative expression for the time rate of 
change of the total kinetic energy can be obtained by multiplying the Euler equation 
for the momentum conservation by ui and integrating the result over the volume of the 
fluid within a unit cell. Upon using the fact that the force on all the bubbles is zero and 
that the pressure integral on the boundary of the unit cell is related only to the linearly 
varying part of q5, i.e. to Gix i ,  we obtain 

k= pU&. (B 10) 
The above relation simply states that the rate of change of kinetic energy of the liquid 
equals the work done by the average pressure gradient on the average velocity of the 
mixture times the density of the liquid. Comparing (B 9) with (B lo), we see that the 
sum of ea must remain invariant under an inviscid flow interaction. 

The above discussion applies to simulations in which the average velocity of the 
mixture is held constant. If, instead, we require that G is held constant, then it is easy 
to show that the average velocity of the liquid will remain constant. Also, since the 
pressure gradient across the unit cell is related to G, we see that the inviscid pressure 
drop across the unit cell vanishes. It is easy to show that under this condition, both the 
sum of impulses and the total momentum remain invariant. The sum of ea as defined 
by (B l), on the other hand, does not remain invariant. Instead, the total kinetic energy 
and the sum of ea, with ea = $(la. va), remain invariant. 
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